Improving Financial Time Series Prediction Accuracy Using Ensemble Empirical Mode Decomposition and Recurrent Neural Networks
نویسندگان
چکیده
منابع مشابه
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods...
متن کاملRecurrent neural networks for time-series prediction
Recurrent neural networks have been used for time-series prediction with good results. In this dissertation we compare recurrent neural networks with time-delayed feed forward networks, feed forward networks and linear regression models to see which architecture that can make the most accurate predictions. The data used in all experiments is real-world sales data containing two kinds of segment...
متن کاملFinancial Time Series Prediction Using Spiking Neural Networks
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-en...
متن کاملAdvanced Methods for Time Series Prediction Using Recurrent Neural Networks
Time series prediction has important applications in various domains such as medicine, ecology, meteorology, industrial control or finance. Generally the characteristics of the phenomenon which generates the series are unknown. The information available for the prediction is limited to the past values of the series. The relations which describe the evolution should be deduced from these values,...
متن کاملMultiband Prediction Model for Financial Time Series with Multivariate Empirical Mode Decomposition
This paper presents a subband approach to financial time series prediction. Multivariate empirical mode decomposition MEMD is employed here for multiband representation of multichannel financial time series together. Autoregressivemoving average ARMA model is used in prediction of individual subband of any time series data. Then all the predicted subband signals are summed up to obtain the over...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2996981